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Abstract—Camera trapping is used by conservation biologists
to study snow leopards. In this research, we introduce techniques
that find motion in camera trap images. Images are grouped into
sets and a common background image is computed for each set.
The background and superpixel-based features are then used to
segment each image into objects that correspond to motion. The
proposed methods are robust to changes in illumination due to
time of day or the presence of camera flash. After the motion
is detected, the images are classified by type of animal and then
the snow leopard images are sorted by individual animal based
on spot pattern.
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I. INTRODUCTION

Snow leopards (Panthera uncia) are listed as endangered
on the International Union for the Conservation of Nature
Red List of Threatened Species [5]. Their range of more
than 2 million km? spans 12 countries in Central Asia. Snow
leopards are very elusive and seldom seen by people. In
2003, scientists estimated that there are between 4,500 and
7,350 snow leopards in the wild, although this estimate may
be too low because as population studies have expanded
over the past decade, scientists are often finding more cats
than expected [10]. Conservation activities include methods
to better understand this species. Researchers use “camera
traps” by placing cameras in remote areas inhabited by snow
leopards. Such cameras capture photographs when a source
of heat passes in front of them. These pictures are then used
to recognize specific cats in order to track populations and
movement patterns. Because each snow leopard has a unique
coat, snow leopards are identified based on the characteristics
of their spot patterns such as their size, shape, orientation, and
coloration [8].

Currently, memory cards from cameras are retrieved and
mailed to researchers who spend many hours analyzing the
pictures by hand. Their main task is to classify the images
of snow leopards into sets corresponding to each individual.
In this research, we use techniques from mathematics, image
processing, pattern recognition, and machine learning to aid
researchers in their work with camera pictures. We first sort
the images obtained from one camera based on rectangular
samples from inside areas of movement within the image. The
assumption is that the sample will correspond to a section
of the animals fur, which can then be evaluated in order

to eliminate images without leopards. Next we analyze the
sorted photos to search for matches among the many different
spot patterns, characterized by mathematical models of each
individual leopards spots. Close match between an image and
a known pattern indicates the same individual. Images taken
at different times are processed and compared to a database of
spot patterns. Every time a new batch of pictures is analyzed,
the database will be updated since there will be new animals
recognized or new views of the same animal. The database
will be used to classify new sets of images as they become
available.

As a result of this project, conservation biologists will be
able to shift the focus of their work from inspecting every
picture to verifying the classification decisions made by the
pattern recognition program and to drawing conclusions from
these findings. The outcomes of this work can be generalized
to research on other large cats with patterned fur, such as
tigers and jaguars. With the latest advancements in imagining
technologies, pattern recognition and classification (machine
learning) is becoming very important and even central to
many computer science and engineering applications. This
research will contribute to the body of knowledge in pattern
classification by addressing the challenging topic of identifying
non-uniform objects that are viewed from many different
angles and distances.

II. PRIOR WORK

There are many different methods of unsupervised image
segmentation. We are interested predominantly in those that
have been applied to the segmentation of camera trap images.
Most notably, Reddy et.al. [11] use a method based on both
texture and color features in order to segment tigers in camera
trap images. Their method is based on multi-level nonlinear
diffusion as described in [12]. In [15], Zhelezniakov et. al.
propose a unsupervised two-step segmentation method. The
first step uses the method of superpixel classification described
in [3] and [2], then texture analysis of each superpixel is input
into a Support Vector Machine in order to classify that pixel
as belonging to the seal or background.

The image data used in these papers are characterized by
greater differentiation in animal texture and pixel intensity
from the surrounding environment than in the case of snow
leopard images. The methods also do not take into account
potential information provided by the continuity of the back-
ground in each image. Our method proposes to use the fact that
the images in our data are taken in sets after each trigger of the
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motion-sensor to recognize areas of motion in each image. This
information will add to that provided by texture characteristics,
in order to improve segmentation results when working with
very well-camouflaged animals in grayscale images.

III. DATA

A camera trap is a remotely-triggered camera that is used
as a non-invasive method to determine population data for a
species difficult to otherwise quantify in the wild. Camera traps
are invaluable in analyzing snow leopard populations, as the
cats are notoriously elusive and seldom seen by researchers.
The cameras are placed in known snow leopard habitats, and
use either a motion or infrared sensors to trigger the shutter.
To take pictures at night, some types of cameras use white or
incandescent flash while others record pictures with only an
infra-red light [8].

The camera trap images used in this research were provided
by Panthera, a nonprofit wild cat conservation organization.
The images were taken during a three year period (2009-2011)
in Tost Mountains, South Gobi, Mongolia. The image dimen-
sions are 1280 x 1024 pixels. There were between 11,000 to
over 27,000 files produced each year. The images are stored in
folders that correspond to different camera locations. Cameras
were placed in 40-41 locations each year. The cameras used to
take these images were the RECONYX RapidFire Professional
Digital Infrared Cameras.

The cameras were programmed to take a sequence of five
photos after the sensor is triggered. The cameras can be
triggered by not only a snow leopard but by any other animal
that passes in front of the sensor, as well as sudden weather
changes, or wind moving the vegetation. This results in many
images in each data folder that do not contain snow leopards.
Fig. 1 shows examples of images used in this research. There
are three daytime images of a snow leopard that are part of a
sequence of 10 images taken within a very short period of
time. The snow leopard moves slowly across the camera’s
field of view (Fig. 1(a)-(c). We also show two examples of
night images. In the snow leopard image (Fig. 1(d)), the
flash illuminated mainly the body of the animal. In the fox
image (Fig. 1(f)), both the ground and the fox have been
illuminated by the flash. Finally, Fig. 1(e) shows an example
of a daytime image of an ibex which is a part of a sequence
of 45 images.

IV. PROPOSED MOTION DETECTION METHOD

To locate the areas of motion in each image, we use concepts
from background subtraction [7]. Traditional background sub-
traction methods used to separate background from foreground
in video sequences perform well when the background is static,
for example indoors where the source of illumination does
not vary. In the outdoor environments of camera trap images,
changing weather (sun, rain, and wind) makes these methods
very challenging to use. To account for the environment-related
changes in the background, our first step is to sort all images
from one location into sets. For each set, we then compute a
common background image. Following, we use one of three
methods to find the location of motion in each image (feature
thresholding, k-means, and fuzzy k-means clustering).

Fig. 1. Examples of images used in our research. (a)-(c) Snow leopard images
that are part of a sequence of 10 images. (d) Snow leopard in a night picture.
(e) Ibex. (f) Fox in a night picture.

A. Sets of Images

We determine which images should be grouped into a single
set for background computation by comparing the conditions
under which each photo was taken. We then group daytime
images into sets according to the time when these images were
taken. Initially, all daytime images that were taken within 90
seconds of each other belong to the same set. Following, we
split daytime image sets using information about the ISO and
exposure settings of the camera. We assume that a change
in camera settings results in significantly different image that
should be part of a different set. We group nighttime images
into sets based only on the camera settings. To reduce the run
time of our background computation, no sets can have more
than 30 images. The minimum number of images in a set is
3.

B. Computing Backgrounds

We compute a background image for each set of images
using median filtering which was shown to be very robust
compared to higher complexity methods. The background
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image By for set k containing K images is defined as
Bk(xﬂ y) = median{ll(‘r’? y)’ IQ(ZE’ y)? tt Il(xﬂ y)7 te IK('I:? y)}'
(1)

Fig. 2 shows examples of backgrounds computed for sets of
camera trap images. The first background, computed for a set
of 17 nighttime images (Fig. 2a), is clear of foreground objects.
The second background, computed for a set of 10 daytime
images (Fig. 2b), contains a faint outline of an animal which
illustrates how it is sometimes challenging for the median filter
to deal with slow motion.

(a)

Fig. 2.  Examples of background images computed from a sequence of (a)
17 nighttime images and (b) 10 daytime images.

C. Motion Estimation

Background subtraction in which each image is subtracted
from its corresponding background is a typical approach to
obtain the foreground mask. However, for snow leopard camera
trap images, such approach proves to be inadequate and leads
to very noisy results where large sections of motion are
missing. Instead, we use the concept of superpixels and image
features.

1) Superpixels: Superpixels were developed as an alterna-
tive to the traditional pixel grid. Superpixel algorithms group
pixels into perceptually meaningful regions. In this work, we
use the Simple Linear Iterative Clustering with Zero Param-
eters (SLICO) algorithm to form 10,000 superpixels in our
camera trap images [1]. The SLICO algorithm clusters pixels
in the combined five-dimensional color and image plane space
to efficiently generate compact, nearly uniform superpixels.
You can see an example of how and where superpixels are
found in Fig. 3.

We found that this large number of superpixels, though com-
putationally expensive, results in more accurate final motion
masks.

2) Features: We use several types of superpixel-based tex-
ture features. Assume that image I;(z,y) has been segmented
into N superpixels. In this work, N = 10000. Subscript %
indicates that image I;(z,y) is the ith image in set k. Its
corresponding background image is By (z,y). Let S™(I;) be
the set of all pixel coordinates that belong to the nth superpixel
computed for image I;(z,y). We then define I'(z,y) as
the segment of image I;(x,y) that corresponds to the nth
superpixel:

Fig. 3. Example of 200 superpixels found within a snow leopard image

and

Lx,y) = J I @, y).

n

Next, we define the operation of creating a new image by
assigning constant values to all pixels in each superpixel. Let

m = {m(1),m(2),...,m(n),...,m(N)}
be a vector of length N and
I} (w,y) < m(n)

correspond to replacing all pixel values in I7*(z, y) with m(n).
We can create a new image with N values as

Mi(a,y) = {7 (2.9) & m(n)} .

The Mean of Differences motion feature is computed as
follows:

1
S 2

|mmm4mm@
(z,y)€S™(I;)

where |S™(I;)| is the number of pixels in superpixel n.

The Difference of Means motion feature is defined as:

DoM {I;(z,y)} = U {If(m,y) < mx

> > L)}

(z,y)esm™(1:) (z,y)eS™(1:)

Bk(x,y) -

In addition to MoD and DoM, we also use mean, range, and
median of superpixels as our features:

Mean {;(x,y)} =
" (s 1

n

(]
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D. Feature Thresholding

Our first method of finding motion in camera trap images
computes MoD and DoM features for each image. Then,
for each pixel, motion decision is made according to the
values of MoD and DoM. If one or both of these features
are greater than their corresponding threshold, the pixel is
classified as a motion pixel. If both features are lower than their
respective thresholds, the pixel is classified as a background.
The thresholds are found empirically for each given camera
trap data set.

E. K-means Clustering

Our second method of finding motion uses k-means cluster-
ing. For daytime images, our feature set includes only the DoM
and the MoD. For nighttime images, we increase our feature
set by adding the range, mean, and median. These metrics
are used as features for the k-means clustering algorithm,
and each superpixel is classified as belonging to one of two
clusters (foreground or motion and background). Given a set
of observations x1, xo, ..., x,, Where each observation is a d-
dimensional vector (in our case the vector of features), k-means
clustering aims to partition the n observations into k <= n
sets S = 51, 5, ..., Sk, minimizing the within-cluster sum of
squares. We choose k to be 2, so that our regions are split into
two sets, representing motion and background. This algorithm
can be expressed mathematically as:

argmmz Z llz — pil|?

1=1x€S;

where p; is the mean of points in .S;

F. Fuzzy K-means Clustering

Our third method of finding motion uses fuzzy k-means clas-
sification. We use the same features as in the case of traditional
k-means clustering above. Fuzzy k-means classification returns
the probability of whether each superpixel belongs to motion
within the image. We chose which classified portion belongs
to the foreground by taking the sum of the confidence values
for each label over all superpixel regions. The label with larger
sum of confidence values is considered the background, and
the smaller set is considered the foreground. We then threshold
the fuzzy k-means results based on a percentage of the average
confidence value of the animal label across the entire image.

G. Method Selection and Postprocessing

We process each image using the three methods described
above. To determine which motion detection result is preferred,
we assume that the desired motion template should contain
a small number of smooth objects and should be noise-free.
Therefore, we count the number of objects in the template,
analyze the smoothness of the chain code that describes their
boundaries, and compute a frequency-based measure of noise
in the template. To improve the results from our classification
algorithms, we use morphological operations to fill all holes
smaller than the size of five superpixels and remove all binary
objects smaller than the size of five superpixels. The resulting
objects are treated as a mask for the image, with each object
corresponding to one animal in the image. The mophological
effects can be seen in Figure 10.

L}

4

(a) Thresholding Results (b) Mask After Morphology

Fig. 4. Development of Image Mask

V. RESULTS OF SEGMENTATION

We present examples of our promising results in Figures 5
and 6. For each original image, shown in Fig. 5(a, e) and
Fig. 6(a, e), we apply the three proposed methods and show
results in the corresponding rows of these two figures. No
one method produces the best results for all types of images.
In the case of the birds and the ibex images, the feature
thresholding method produces superior results. Fuzzy k-means
method gives the best results for the daytime snow leopard
image while the traditional k-means technique is best in the
case of the nighttime snow leopard image. This variability is
present across all camera trap images and underscores the need
to explore different segmentation methods for this particular
application.

VI. CLASSIFICATION

After motion is recognized, classification methods are used
to determine whether images contain snow leopards. These
methods develop features to use in a machine learning algo-
rithm in order to classify each image as either "snow leopard”
(1) or ’no snow leopard” (0).

A. Spot Recognition

Our algorithm uses a learning method called a Cascade
Object Detector, based apon the Viola-Jones algorithm [14].
This object detector recognizes certain image features in
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(a) Original image

(b) Thresholding

(g) K-means

(c¢) K-means

*
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<

(d) Fuzzy K-means

(h) Fuzzy k-means

Fig. 5. Results for daytime birds and ibex images.

similar relationships in order to recognize specific objects in
new images robust to differences in scale or illuminations. It is
robust to scale, as it looks for similar image feature blocks at
cascading scales across the image. The image feature blocks
used can be seen in Fig. 7.

However, it is not robust to rotation, so the object detector
must to be trained to recognize each possible rotation of a
spot. This is obviously an impossible task, and considering
that there are many different types and variations on types
of spots the accuracy of our spot detector is very dependent
on the number of samples it has been trained on. We worked
to develop a training set of close to 3000 spots from three
different directories of images, which gives us the ability to
recognize almost all spots in the image. We get many false
positives, where spots are recognized in the background (as

(b) Thresholding (f) Thresholding

Ry

(c) K-means (g) K-means

z.

(h) Fuzzy k-means

Al W

(d) Fuzzy k-means

Fig. 6. Results for daytime and nighttime snow leopard images.

they have similar image feature blocks to the shadows around
rocks). We minimize the effect of these false positives by only
counting the spots that are located within known motion areas
in the image.

B. Eye Recognition

We use a similar classifier developed though a cascade
object detection algorithm in order to recognize snow leopard
eyes at night [14]. The characteristic and specific reflection
of light off of predatory eyes from image flash is easily
recognizable in images. The presence of one or two eyes in
nighttime images are valuable features for machine learning.



SEATTLE UNIVERSITY CENTER FOR ENVIRONMENTAL JUSTICE AND SUSTAINABILITY FELLOWSHIP FINAL REPORT, JUNE 2016 6

Fig. 7. Features used in the Viola-Jones classification algorithm [14]

C. Machine Learning

We use a Support Vector Machine (SVM) as a machine
learning framework for our snow leopard recognition method
[13]. This SVM will use information such as number of spots
in the image that correspond with areas of motion, number
of eyes during night images, and texture characteristics within
the areas of motion. The SVM will be trained on a data set by
sending in all of these characteristics as well as whether or not
each image corresponds to a leopard. It will create delineations
between regions in the multidimensional plot data based on
whether there is a snow leopard in the image or not. When
future images are analyzed, the SVM will predict whether they
contain a leopard or not based on the region of the location of
that image’s data point.

D. Accuracy

The accuracy of the machine learning algorithm is
determined using the following metrics:

.. _ TP
Precision = TTT‘D 7P

Recall = Tp2PN_ ow
ACCUraCY = Fp Ny FPIFN

where TP is the number of true positives, F'P is the
number of false negatives, TN is the number of true
negatives, and F'N is the number of false negatives.

VII. INDIVIDUAL SPOT PATTERN RECOGNITION

Once the images are sorted and the snow leopard images
are separated from those containing other animals, we are
developing a method of recognizing individual leopards based
on spot types and spot relationships. This method will run
autonomously on large sets of images and classify each image
as belonging to an individual leopard. We use samples of
the images from within areas classified as belonging to snow
leopards in order to analyze and recognize the same pattern of
spots. Examples of the sampled images can be seen in Figure
8.

- sagh =

(a)Sample from image 153 (b) Sample from fmage 155

Fig. 8. Sample of leopard’s spot pattern from two similar images

A. Thresholding

The samples of the spot regions of each snow leopard
region will be binarized using an adaptive threshold, which
can be seen in Figure 9. The individual spots will be treated
separately, and placed in a data structure that will maintain
their pixel location, the location of their center of mass, the
type of spot based on its curvature, and a mathematical model
of the spot curve.

(a)Sample from image 153

(b) Sample from image 155

Fig. 9. Spot samples after thresholding

B. Skeletonization

Once the snow leopard motion regions are recognized, the
external regions are set to zero and an adaptive threshold
is used on the regions corresponding to motion in order to
binarize the images with spots as objects. Then each object
is separated and saved as an individual object. Each object is
skeletonized using a skeletonization algorithm [9] that creates
a skeleton of the binary object. This skeleton is developed by
storing the locations of the centers all maximal disks within
the binary object. A disk B is maximal in a set of disks A if
B C A and if another disk D contains B then D ¢ A.

Once the skeleton has been developed, all extraneous branches
are removed. This is done by removing all branchpoints from
the skeleton, and then comparing the length of the branches
at each point. The smallest branch is removed, and the
branchpoint is replaced. The process is repeated until there
are no more branches on the skeleton.

C. Spot Curvature

I am currently using a curvature recognition method based
on curve fitting of the skeletonizations of spots [6]. This



SEATTLE UNIVERSITY CENTER FOR ENVIRONMENTAL JUSTICE AND SUSTAINABILITY FELLOWSHIP FINAL REPORT, JUNE 2016 7

1 J

(a) Original Spot (b) Spot Mask

(c) Skeleton Without Branches

Fig. 10. Spot Skeletonization

method uses each pixel locations within the skeleton as data
points and then fits a parametric curve through the data. A
sinusoidal curve fit is used, which can be replicated along the
real line and then shifted in order to match the same curve
with parametric data that begins at a different point on the
curve.

D. Groth’s Algorithm

Groth’s algorithm is a pattern recognition method developed
by Edward Groth in 1986 for astrophysicists in order to
recognize similar patterns of stars in different time zones
and from different telescopes. It has been used recently to
match patterns on whale sharks in order to identify individual
animals [4]. T am developing a MATLAB implementation of
Groth’s Algorithm to use to recognize spot patterns, with the
center of mass of each spot being sent into the algorithm
to be compared to previously recognized spot patterns. This
is done by comparing the triangle created by every possible
combination of three spots within the image, and using the
ratios between the sidle lengths and the angles at each corner
to match triangles in order to recognize the same triangle at
different scales and angles.

1) Triangle Matching: Every possible combination of three
spots is considered, where:

e 1y is the length of the shortest side of the triangle
r3 is the length of the longest side of the triangle
€ is the error tolerance, we used 0.01
R is the triangle ratio: R = %
C is the cosine of the angle at the vertex between the
longest and shortest side

e S is the sine of the angle at the vertex between the
longest and shortest side
Triangle A and Triangle B are considered a match when:

(Ra — Rp)* < th, +thy )
and
(CA*CB)2<t?jA+t%‘B (3)
where: . o N
t% = 2R?€ (7“§ s + T%> )
and

1 c 1)\?
t2, = 25%¢ (2—+2>

T3 r3ro 7’2

2
+3C2%t <12 . 12>
T3 3T T3

2) Pattern Matching: Once we have our list of matched
triangles, we need to remove potentially false matches. In order
to do this, we use a filtering method based on the difference in
the logarithm of the perimeter of each set of matched triangle.
We define

log(pa) — log(pp) = logM (5)

where log(pa) is the logarithm of the perimeter of triangle
A, and log(pg) is the logarithm of the perimeter of triangle
B. We then calculate the average and standard deviation of
the log(M) values for each matched pair of trangles, and
remove all triangle matches that have log(M) outside of a
factor times the standard deviation of the average.

That factor is determined using the number of clockwise and
counter-clockwise defined triangle matches in the set. We let
the number of same-sense matches (meaning both triangles
are defined in the same direction) be n and the number of
opposite-sense matches be n_. Since all true matches must
be the same sense, we can estimate how many of the matches
are true and false by defining

my = |ny —n_| (6)
my=mng +n_ —m;. 7

If my > my, we let the factor be 1; if 0.1m; > my, we let
the factor be 3; otherwise, we let the factor be 2. This ensures
that matches are discarded at a rate that is comparable to the
relationship between m; and my.

We repeat this filtering process until no more matches
are discarded, or until all matches are discarded (which will
occur when two patterns do not match).

We then use a voting method to decide which points
within the patterns match. Each matched triangle casts a vote
at each vertex. After all the votes are cast, we sort the vote
array from most to least votes. If no points received more
than one vote, then the patterns do not match. Otherwise, we
match successive pairs of points in the array. until the total
vote count drops by a factor of 2.
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Fig. 11. Toy problem example of the Groth algorithm

E. Individual Recognition

Once the pattern and the individual points have been
matched by the Groth algorithm, I plan to iterate through the
pattern and verify that the matched spots are of the same or
similar type. This ensures that we have accurate matches of the
individual leopard spot pattern and not just the pattern of spot
locations. The iteration will be done recursively, starting with
the spot on the top left of all the matches and then moving to
the vetices of the triangles that were matched using that spot.
A list of all the matched spots will be maitained, and the spots
that have already been matched and verified will be removed
from the list until the list is empty or until an incorrect spot
type has been found.

VIIL

In conclusion, the method described will allow conservation
biologists to optimize their use of time by removing the
necessity of manual image sorting and recognition. This will
allow them to process astronomically larger data sets, which
will in turn improve the quality of their data analysis.

CONCLUSION AND FUTURE WORK

There is much more work to be done before this method will
be put into use. The classification of leopard vs. non-leopard
images must be improved, and there are bugs in the proposed
pattern recognition method that must be dealt with: primarily,
how to deal with the stretching and skewing of the leopard’s

fur, and therefore the pattern of spots, as the animal moves.
This causes the largest number of issues with the current
system. The spot type recognition and pattern matching must
also be integrated together in order to use the information
from both for accurate pattern matching. These questions
will continue to be pursued by Dr. Miguel and her future
undergraduate research students.
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