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Visual Data

* Visual data: images, videos, and feature vectors
* Visual data is one of the biggest data

* Analytics on video or image data, either off-line or streaming, have
become prolific across a wide range of application domains [1].
— due to the growing ability of machine learning techniques to extract information
* Despite this rich and varied usage environment, there has been very
little research on the management of visual data [1].

— Ad-hoc collection of tools, unique and individual solutions

— Seeks for new approaches
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Why Location with Visual Data?

Many visual data (images & videos) are naturally tied with
geographical information

— Surveillance, traffic, real estate, leisure, to name a few
To better organize images & videos in large datasets

— Indexing, searching

Integrate visual data with other information

Machine learning (spatial visual correlation)
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How to Get Location?

e Easier to capture location using GPS-equipped Cameras

- E.g., smartphone, table, digital camera, GoPro

é’yﬁ,
CameV ws
Geo-tagged Image
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Already Lots of Geo-tagged Image Datasets

@ User-generated Images
— Ubiquity of smartphone users
* Billions of mobile subscriptions

— Network bandwidth improvements
— Growth of image sharing online services fllckr o , Q&

[E.g., Flickr collected 200+ million geo-tagged images J

@ Professional-generated Images

[E.g., Google Street View Project collected photos for 3000 cities ]
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Many Applications: e.g., Smart City

USC V1terb1 '



Motivation

e State of the art techniques utilize camera location (e.g., GPS input)
for organizing and searching images/videos

— However, only camera location is not enough
* Location data do not have human viewpoints

— Viewing direction, Distance between camera and object
(appearance of object), Semantics

* Any methods to potentially help managing visual data at the high
semantic level preferred by humans?
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Issues to Consider

* More and more visual data are generated

— More amount than human can physically watch = machine watches
 Still, visual data collection is expensive and in adhoc manner

— Size of data, orchestration of collection, timely collection

e Systematic use of visual data is not much available

— Search, index, sharing, annotation, etc.

* Preparation for Al and machine learning is needed
— Machine automatically selects dataset for learning?
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The Question

* For efficient visual data collection, indexing, searching, and
furthermore diverse image machine learning, how can we
use geographical properties of visual data?
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Location Data Collection

S'Q GPS ‘ Latitude/Longitude ! ’ . ‘

- Compass ‘ Direction
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Modeling Viewable Scene of Image

* Accurately describe visual content through field-of-view (FOV) model

(L e ey

_T...____|__ -_—-

1 ﬁame :+4J"

P <longitude latitude=:
camera location
B : viewable angle

—

d : camera direction vector

L

FOVScene description 1s generated every f frames
R : visible distance
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Extended — Field of View (FOV) Model

=l

Roll

R: Midline of a side face

pp: camera location

d: camera view orientation
o: viewable angle

R: viewable distance

2D FOV Model [2] 3D FOV Model [3]
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Meaning of Viewable Scene Models

e What does this mean?

- Y =

New Visual Data

Management Solution
Image/Video as Spatial Database

Spatial objects Technologies

Challenging Video Problem = Known Database Problem
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More Precise Model

@ Spatial Representation

Geo-location Point Field of View (FOV) [ Scene Location [4] ]
X imprecise v’ Better spatial v' Precise spatial
representation representation
X Loosely representing v Tightly representing
spatial extent spatial extent

. :<longitude,latitude>
o viewable angle

9 :camera direction
b R :maximum visible distance
L R
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Spatial Keywords

e Searching videos using geo-coordinates (figure) is good and effective,
BUT...

“Is this the best?”
People are already familiar with keyword-based search!

We have far more information in the virtual world
-Geographic Information Systems

Any way to utilize textual keywords?
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Retrieving Spatial Keywords

Geo-
Coordinates

88 Spatial
' Keywords

Geographic Information Systems
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Visual Features & Keywords

Metadata from Visual Analytics

Record video using
Camera with sensors
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Visual Data Organization and Indexing

<

P : camera location

d : camera direction vector

‘ Database Technologies
& : viewable angle

Nz £ : timestamp (hybrid storing and indexing,
dynamic update, searching, etc.)

w”e,,

. Where

| B Tommy Trojan TR =) -
i’ uscC Who
£ N What
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Spatial Coverage Model [4][5]
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Basic Question

* When we have thousands of geo-tagged images in an area

(e.g., Los Angeles downtown), how do we measure how much
they visually cover the area?

— Human perception = e.g., direction

— Completeness =2 how much is enough? (for human and Al)

* How do we identify areas with no visual information?

— Automatic crowdsourcing data for complete coverage
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Problem Definition

* Given a field-of-view dataset  and a query range R, the
spatial coverage measurement (SCM) problem is formulated as

SCM(F,R;) = p

* pisthe geo-awareness percentage of F to the visual space
located in R,,.
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Baseline: Area Coverage Model (ACM)

* ACM estimates the percentage of the area R, covered by F.

/N

_ Area(Overlap(Ry, F)) /’Z%
ACM(R,, F) = Areall) o

f2

f1

/< ACM does not consider the directional property of F.

A

e Tty
3 e o
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Directional Coverage Measurement Model (DCM)

* DCM extends ACM to measure the visibility of the area R,
from various directions
— Divide R, into a set of directional sectors.
— Calculate ACM for every sector and then aggregate the result.

| |

d
Zizl Coverage iy (RQa F, i)
d

DCM(R,, F,d) =
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Cell Coverage Measurement Model (CCM)

* CCM extends DCM to measure the visibility at a finer
granularity by dividing R, into cells and evaluating the visibility

of each cell, then aggregate the results. (Algorithm 1 in paper)
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Experiments with Large Scale Datasets
e iy () inags v o) Lt mae

Manhattan (MA) 21, 947
Pittsburg (PT) 5, 940
Los Angeles (LA) 36, 624
San Francisco (SF) 409, 862
Manhattan,  Pittsburg,
NY, USA PA, USA
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ACM, DCM, and CCM with Large Datasets

well distributed
directions

depends on

image density

Spatial Coverage Percentage

Query Range
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2D —> 3D Spatial Coverage Model
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Jul 28 2019 @
w - v
Choose a data file: Choose File extracted-data.csv \
total number of frames: 645436

Startframe number 40000 : Coverage using Alg1: 31.20% |

End frame number 42000
select one from how many frames 10
R value 100

\ :
Alpha value [6 \ Coverage using Alg2: 3.75%
draw \ /
Choose a query file: hoose File demoQuery.txt .
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Efficient Data Collection
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Spatial Crowdsourcing

Computing paradigm where humans are actively enrolled to participate in data collection
(in our case, visual data w/ locations), especially at a certain location and time.
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| |
Spat|a| CrOWd S()urcing : Query Region and F: Applications
: Budget : or Users
| v : A
. . ' Collect Spatial :
e Continuous Collection | Metadaa [
|
and Management [6] | \ |
: Spatial Visual :
* Coverage Measure | Modeling |
_ . Known : : Spatial
o Spatlal Vlsual Model Data Sources | | — I | Crowdsourcing
- : Spatial Coverage :
* Spatial Crowdsourcing | Measurement | |
| |
* Customized datasets | Analyze |
. - : Completeness :
* Collaborative utility : £ |
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Access Method
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Conventional Image Search

* Query By Example (QBE)
Google [l w1 ——y

Search
All Images Maps Shopping More

Yandex | usioadedimage

VEB IMAGES VIDEO MAPS TRANSL
About 2 results (0.57 seconds)

'. o Image size:
640 x 476
No other sizes of this image found.

Visually similar images

= S "E

https://images.google.com/

< Back Similar images

Original image
640x476

The same picture was not found " R : ‘
». - N e

https://yandex.com/images/

Deep learning based computer vision solutions
] that help our customers use visual information
.- @@ to search and discover the world around them.

Amazon Flow Mobile App
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Conventional Image Search (Cont...)

* Query by Geo-location
Flickr Photo Search API ot oo

Avalid latitude, in decimal format, for doing radial geo quariss.

flickr Sign Up Explore Create tos : “ Sign In

(Geo queries require some sort of limifing agent in order to prevent the database fram crying. This is basically like the check against

The App Garden "parameterless searches” for queries without 2 geo component.

Creste an App  AP| Documentation  Feeds = What is the App Garden?

Atag, for instance, is considered a limifing agent as are user defined min_date_taken and min_date_upload parameters — If no limiting factor

flickr.photos.search is passed we retum only photos added in the last 12 hours (thaugh we may extend the it in the futurs).
—

Return a list of photos matching some criteria. Only photos visible to the calling user will be Avalid longitude, in decimal format, for doing radial geo queries.

returned. To return private or semi-private photos, the caller must be authenticated with ‘read’
pemissionstandinarelpemissionliciiediihelpioositautienticatedical sl onivietmipublic Geg queries require some sort of imiling agent in order to prevent the database from crying. This iz basically ike the check against

photos. > . -
"parameteriess searches” for queries without a geo component.

Authentication
Atag, for instance, is consitered a limiting agent as are user defined min_date_taken and min_date_upload parameters — If no limiting factor

5 passed we return only photos added in the Iast 12 hours (though we may extend the limit in the future).

radius (Optional)
Avalid radius used for geo queries, greater than zero and less than 20 miles (or 32 kilometers), for use with point-based geo queries. The
default value iz 5 (km).

www.flickr.com/services/api/flickr.photos.search.html

Instagram £ SandboxInvites £ Manage Clients & Login

Search Documentation

Jnstagnam Overview Media Endpoints

Authentication

13 Log in with Facebook media/search Search for recent media in a given area.

Login Permissions

This method does not require authentication.

Arguments

Instagram Media Search API

Permissions Review
GET /mediafsearch

Sandbox Mode

) Nttps://api. instagran . con/v1/mesialse: Ing=: _token=acces: RESPONSE ~
Secure Requests

Search for recent media in a given area.

Endpoints
| e I
o s Scope: public_content
o Media
ACCESS TOKEN A valid access token.
LaT Latitude of the center search coordinate. If used, Ing is required.

NG Longitude of the center search coordinate. If used, lat is required.

DISTANCE Defaultis 1km (distance=1000), max distance is Skm.

Locations
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Spatial-Visual Search

Spatial-Visual Search: find similar images to a given query image and
simultaneously within a given geographical area.
Query Spatial Range Query Image

crv o
7 d@ff
/\3’4 Q &
{/]S ~— O,)@
4 Parking Lot B Ny
3,
: : S SSth A
University & St ff@/so/
of Southern 4 @ USC Dworak-Peck 7,
California § School of Social Work
&*00 Gabilan Court
},h°°' USC Rossier Sch(er N : usc officeof
of Education 2 (Tl Services
USC Inter
Al

W b

h
llege St

Founders Park
Harris Residential Hall

Universi
Residential

VKC Library
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B i TgieT Caiuens 6 Enterprise Rent-A-Car
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Main Challenges with Spatial-Visual Search

@ Performance:
e Searching large volume datasets of geo-tagged images

@ Accuracy:
e Curse of dimensionality (high dimensional visual features)
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Naive Indexes — Double Index (Dl)

R*-tree LSH (Locality Sensitive Hashing)
Q Q,
[T )
Ra [ R || Bucket: 1 -Hé[i
= || Bucket: 2 > "-.,L_L||
- | )
i ¥ ¥ PV |g[Budet3i> |5 el Output
R, |R, [R R |R - e
il il Il o||Bucket: 5 > :-L: ri'i'L' o 5-.’5-.’5_|
TV TrE e s o [ 2[R]R]2 8
mmm s = | - |[PuCket g avouut  [{E] AT il
:&3}&3}: é?* Bucket: 7 > Il A | K IS ool

X Poor Performance: Execute query twice and intersect the results
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Hybrid Index — Two Level

1) Augmented Spatial First Index (Aug SFI) 2) Augmented Visual First Index (Aug VFI)

*********************

|
Aug Visual First | Hash Table 1 Hash Table 2 1
|

T 32ang
o z3emng
€ 1epng
; ¥ 1eang

| Other secondary R*-trees |

|

c|le }

(=] [=]

zlall]i

;i : ‘I ‘RS‘REHR?|RG|R9‘ ‘R10|R11‘ |R12|R13|R14‘ ’R5|R6| ‘R'f’RB‘ |R9|R10‘R11HR12|RB|
1
| [

________

v" Outperforms Double index
Performance may suffer due to the bias towards spatial or visual dominance of the primary index
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Observation: Locality of similar visual features of “street” images

Locality Analysis * Query Image * Similar Image O Spatial Range

High Locality Low Locality

Geo-Visuzisimilar | m ¥ - ) { ¥
|\ * » *

o

Visual similar

USC Neighborhood Manhattan, NY Pittsburgh, PA Orlando, FL Locality Analysis
(i ‘ g o Radius of Spatial Range (m) = {200, 300, 400, 500}, Visual Threshold (k)= 10.

> Ciftaste Pak Resere
Yo A &)

o
lorth Bergen, 4 "» ndo Science Center ® b
ey )
oy NS 7 ; ; i
CREAY Y &4 A e
" % j‘v ichy PANSAG N o p- g "o" o 0
P L N £ 4 ;‘;y, - e
phen S ’ . - Con ] g 4
¥ v Imega . wiosven | ¥
o 4 '|'~ 0
ey N Mt e @ . conay
=i e i .
4 ‘\\ ' Ll
ek Dermn K} WU o Edgewo od
L] z 0
/4 [525%] Pine Castlé :
N rork e e / '
s s Brecnwood )

$=200, k=10 $=300, k=10 $=400, k=10 $=500, k=10

o]

(1- RMSE)
B~ [e))

N

o

Difference between Visual Similar Images and Geo-visual similar images of

aquery image ® Orlando M Pittsburgh Manhattan ®USC

= Nearby street images are also visually similar
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Spatial-Visual Indexes using R*-tree (Baselines)

1) Spatial R*-tree Index (SRI)

@ Organizes the dataset using “only” the
spatial properties of the images.

@ Each leaf node is augmented with both
the spatial vector and visual vector of
each image.

Nodes are associated with MBR
of spatial properties

R. | Ry
Ry | R Ry | Rs

USC V1terb1 '
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2) Visual R*-tree Index (VRI)

@ Organizes the dataset using “only” the
properties of the images.

Each leaf node is augmented with both
the spatial vector and visual vector of
each image.

R, | Ry Nodes are associated with MBR
| of (dimension-reduced) visual
properties
Ry | Rz | Rs Ry | R ! f

Rll Rll Rl3 Rld RIE Rlﬁ Rl? Rlﬁ RJQ Rll:l

Ry [R
Yy F 3 P vy Fid
oL
on G (B e {7}
i‘gLLLJ i Dimens.ion
EQL‘Q i Reduction




Hybrid Indexes - Plain Spatial-Visual R*-tree (PSV)

@ Hybrid index structure which organizes images using their spatial
and visual properties [7].

ﬁ S TR !
-] R].I:l R:ll Rll Rl3 Rlﬂ RIE Rlﬁ Rl? Rla RJQ Rll:l

R
R EEREEEER

A node is associated with an .
MBR of both spatial and

Rs
'

- F

(dimension-reduced) visual

properties %ﬂ

o1

Ly

v" Outperforms baselines i@

________

< PSV treats the spatial and visual properties of images equally; however,
these are two different sets of features (might be treated differently)
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Hybrid Indexes: Adaptive Spatial-Visual R*-tree (ASV)

@ Similar to PSV with the following changes:

— Treat the spatial and visual properties differently by creating spatial MBR and visual
MBR for each node.

— Modify the underlying insert algorithm to accommodate the new design of each node.
Hence, the goodness values used in the insert algorithm are modified to consider both
MBRs.

* Margin = « (mar.ginspatial)/max(marginspatial) + B margingig,q/max(marging;s,q;)

* Area =« (areaspatial)/max(areaspatial) + B areayisyq/max(areayisq;)

* Ovarlep = a (overlapspatiar) / max(areaspau-al) + B overlap,isyq/max(areayisyqr)

a=0,=1 - Visual R x —tree Index

a=1,6=0 - Spatial R * —tree Index
Otherwise — Spatial — Visual Index

USC V1terb1 '
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Hybrid Indexes: Clustered ASV R*-tree (CSV)

@ ASV organizes a dataset by considering
simultaneously the spatial and visual sub-
division for the global area.

X The visual MBR in a node can loosely represent the
contained images.

@ After ASV is constructed, for each node we can
cluster the contained images (using k-means)
and create a set of visual MBRs.

@ While searching the tree, for each node

— The Spatial MBR is used to prune the search space of
a query spatially.

— The bundle of Visual MBRs are used for pruning the
search space of a query visually.
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Experiments -- Geo-tagged Image Datasets

]

[ Orlando Downtown

Pittsburgh Downtown

)

Manhattan

[ usC

[ San Francisco
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Baseline vs.

250

200

150

1oo

5

Avg. # of Accessed Nodes
o

Using MA

Using LA

m SRI _

m VRI 4]

o

m PSV .

2

ASV <

1l Ill | I
[
OR
Datasets
Spatially Sparse Spatially Dense

reached up to 1.2x, 1.6x, and 1.8x.

reached up to 2.1x, 4.8x, and 5.6x.
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Hybrid

U —

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
LA

=]

Datasets

SRl achieves a perfect recall score
Among Hybrid, recall of ASV and CSV is better than PSV
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Scalability: Evaluation on a large-scale dataset
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With respect to SRI, the speedup factor of ASV, and CSV reached
up to 18x and 25x, respectively.
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Filtering for Computer Vision Applications
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Geospatial Image and Video Filtering Tool (GIFT) [8]

| >An=evffi'cient tool to organize, index and search spatio-temporal image/video data.
“» A fast way to select related image/video frames according to user demands.

@ Queries —————— . D

Video
Analytics

tment

pogle -

Less resources
Faster processing
No lower quality
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Automatic Generation of Panoramic Images
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Panorama Problem

Point panorama Route panorama

@" LA AAAA

Small number of well selected input images would be fine!

How to automatically select the minimum number of image
frames for panorama generation?
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Example: Point Panorama Results [9]
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Automatic Generation of 3D Models [10]
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Image Machine Learning
with Edge Computing
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Image Machine Learning Example

* |n collaboration with the Sanitation Department of Los
Angeles, monitor LA streets for cleanliness using images.

* Currently, data are manually collected and evaluated:
inefficient, costly 2automate!

* Goal: automatically detect the cleanliness of streets as well as
any special objects in need of removal.
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Image Classification of Street Cleanliness

Image Label Description

Image Label  Description

'Examples

Examples

Bulky Iltem — Few 1 to 3 items (e.g., Encampment A tent for people who
coach, desk, live in streets.
mattress, and tire)
are thrown on the
street.

Bulky Item — More than 3 items Overgrown There is extra

Many are thrown on the Vegetation vegetation on the
street. streets.

lllegal Dumping There is an area Clean The street is clean ©

which is full of waste
which needs special
equipment to
remove.
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Image Based Classifier

* Achieved 80 — 90% accuracy (depending on class): stable and practical
* The more images in an area, the higher the accuracy becomes: promising

(a) Training
label machine
learning
1 feature EEEEE algorithm
extractor features
input

(b) Prediction
. feature classifier
[T T 111 label
extractor features model
input
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Global vs. Local Classifier

* Global Classification Scheme (GCS)

— This approach constructs one single trained model that learns the image features
throughout the overall geographical region in a dataset.

— Street scenes have visual differences across geographical regions - Classification
accuracy decreases

e Geo-spatial Local Classification Scheme (LCS)
— Utilizing the geo-properties tagged with the images

— Partition the overall geographical area into sub-regions using Grid or Bucket
Quadtree.

— For every sub-region, construct a local trained model.
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Edge Computing

« Train machine learning models
on the server (initial model)

l

. Distribute the models to edge
e . i : A:_'_I devices (e.g., smartphones,
i E '__iﬁ_l% smart cameras)
| A ==Y - Inference happens on edge
Colulr, W, DG oty 1WA . devices using CPU on edge

« Report selected results to

involved agencies
Improve models iteratively

Framework to train, distribute and adapt models

65
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Image Learning with Edge Devices

* Provide various model “flavors” of the same classification task

— Choose the one that fits the application requirements and device
capabilities =2 Resource based model building and dissemination

e Save bandwidth by reducing the amount of transmitted data
— Resize image: smaller size of original image
— Extract visual feature vectors on device and transfer

* Improve model by selecting images for retraining at new locations and
time periods

S} Itl
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Experiments

* Show the trade-off between inference accuracy and the resource constraints of the
edge devices
— models can be tuned to support wide classes of edge devices

* Three classes of edge devices

Device Class CPU GPU Memory
Broadcom BCM2837B0 quad-
Raspberry Pi 3B+ Low core A53 (ARMv8) Broadcom VideoCore IV 1GB LPDDR2 SDRAM

64-bit @ 1.4 GHz

Qualcomm Snapdragon 845 8x
Google Pixel 3 Medium | Qualcomm® Kryo™ 385 CPU Qualcomm® Adreno™ 630 GPU 4GB
64-bit @ 2.8 GHz

56 (Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz

2 Tesla P100-SXM2-16GB 187 GB

Desktop High

USC Viterbi

School of Engineering
Integrated Media Systems Center




Experiments

* Datasets:
— D¢ geotagged labeled LASAN image collection for cleanliness classification

* 42,331 images with 5 labels: 14,495 bulky items, 7,120 illegal dumping, 7,007
encampment, 6,982 overgrown vegetation, and 6,727 clean

— DCAL236: Caltech 256

* 30,608 images with 256 labels, with a minimum of 80 images per label and
119 on average

* Three pre-trained models:
— Inception V3, MobileNet V1, and MobileNet V2
— Used transfer learning
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Inference Time vs Model

—— Desktop —#—RFl —a—Smartphone

Log scale £

Mode mobilenet vl

Image size
0 Width multiplier
mobilenet v2 inception 3 MOdeI
* Raspberry Piis 1.5x order of magnitude slower compared to desktop
class devices
USCVlterb1
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Feature Size vs Accuracy

BEERER feature size (KB)
e SCCLECY 76
¥
o

Average Visual Feature Vector Size (KB)
&
Accuracy %)

L o
1 =3} L

M2on
E|£‘|

75

Mode mobilenst vl mobilenst v2 inception v3

e Usually, the larger the size of the VFVs, the higher the accuracy
— they carry a more detailed summary of the image
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Location-based Feature Selection

kltest accuracy

¢ M1: Excludel_iimagesfrom REIEE B ST o
Downtown ERISINE IR NANERNANEYRERN AN

o of i NNV R SN N R
* M2: Includes 50% of images from 5**%355 \ EEEQ*SEEEH*
Downtown LA =N NN N AN YA RNNY NN RNNNR

M1 M2IM1I M2 M1 M2 M1 M2 11 M2 M1 M2 M1 M2 M1 M2 ML M2 M1 M2 M1 M2

e Accuracy tested on 50% images of

o p Fal 17 EE-_ 1A 17 el '.IEL 17 panfl )
unseen data in Downtown LA i
1 5 50 25 15 1 75 5 35 1
Maode mobilenet_vl mobilenst_v2 nception_v3

* Under-represented regions significantly affect the accuracy
— Sometimes with almost 15% drop of accuracy
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Outline

* Motivation

 Modeling Spatial Property of Visual Content
— Point Location
— FOV Model
— Image Scene Location
* Harnessing Spatial Property in Data Management
— Spatial Coverage Measurement
— Efficient Data Collection
— Access Method
— Image Machine Learning with Edge Computing

* Conclusion

S} Itl
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Conclusion

* Provide an overview of 1) modeling spatial properties of visual data, and
2) various ways to harness spatial properties in visual data management
and machine learning with examples.

e Spatial metadata are getting more important in many visual data
applications including image machine learning.

* Proper consideration of spatial metadata would be useful in many visual
data applications, especially where geographical information is critical.
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Thank you!
Q&A

Seon Ho Kim, Ph.D.
University of Southern California, CA, USA
seonkim@usc.edu
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